Acta Crystallographica Section E

## Structure Reports

Online
ISSN 1600-5368

## N. Bouhaine, ${ }^{\text {a }}$ A. Gherrou ${ }^{\mathrm{b}} \ddagger$ and A. van der Lee ${ }^{\mathrm{b} *}$

${ }^{\mathrm{a}}$ Faculté des Sciences, Département de Chimie, Université Badji Mokhtar, 23000 Annaba, Algeria, and ${ }^{\mathbf{b}}$ Institut Européen des Membranes, cc047, Université de Montpellier II, 34095 Montpellier Cedex 5, France
\# Present address: Services ChemBrains, 240
Avenue Stirling, LaSalle, Quebec, Canada H8R 3P4.

Correspondence e-mail:
avderlee@univ-montp2.fr

## Key indicators

Single-crystal X-ray study
$T=120 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$
$R$ factor $=0.039$
$w R$ factor $=0.086$
Data-to-parameter ratio $=25.1$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
## 3-[(1Z)-1-Hydroxy-3-oxobut-1-en-1-yl]-7-methyl-2H,5H-pyrano[4,3-b]pyran-2,5-dione

The molecular structure of the title compound, $\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{O}_{6}$, contains a cis-enol ring disordered with respect to the position of the hydroxyl proton. The crystal structure contains sheets perpendicular to the $b c$ plane.

## Comment

The title compound, (I), was synthesized in the course of a study aiming to find new pyrone ring-containing compounds which are known to possess biological and pharmacological properties (Anderson et al., 1976; Grivaky et al., 1980; Kuo et al., 1984; Cairns et al., 1985).


In the crystal structure of (I), the $\beta$ angle in the alternative setting $P 2_{1} / n$ is close to $90^{\circ}$ at $120 \mathrm{~K}, v i z .90 .938(2)^{\circ}$. At room temperature the $\beta$ angle approaches $90^{\circ}$, viz. $90.05(1)^{\circ}$, without displaying even close to orthorhombic structural symmetry.

The molecular structure of (I) is shown in Fig. 1. In the title molecule the non-H atoms are almost coplanar, with a maximum deviation from the mean plane of 0.060 (1) $\AA$ for atom C1 [mean planes calculated following the method of Rollett (1965)]. The glide-related molecules are inclined at an angle of $6.7^{\circ}$ and form a sheet-like structure (Fig. 2) perpendicular to the $b c$ plane. The in-plane arrangement of the molecules is shown in Fig. 3. The cis-enol rings of different molecules are arranged in lines parallel to the $a$ axis. Very weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions are found between the molecules in-plane. No significant $\pi-\pi$ interactions are present between sheets. There is effectively one rather short intersheet distance, 3.109 (2) $\AA$, between the C11 atoms of molecules in adjacent sheets. The structure is rather close-packed; the volume occupied per non-H atom is $14.9 \AA^{3}$, which is considerably lower than the usual $18 \AA^{3}$ normally found for organic and organometallic structures, but not so uncommon for condensed aromatic systems.

The $\mathrm{O} \cdots \mathrm{O}$ distance in the cis-enol ring is 2.456 (1) $\AA$, which leads to very strong intramolecular hydrogen bonds between H 30 and O 15 , and between H 29 and O 16 . The $\mathrm{C}-\mathrm{O}$ distances (Table 1) in the cis-enol ring lie in between the distances for a typical single ( $1.41 \AA, \mathrm{Csp}{ }^{3}-\mathrm{OH}$ in alcohols) and a typical double bond ( $1.21 \AA, \mathrm{Csp}^{2}=\mathrm{O}$, in ketones; Allen et al., 1987). Similarly, the $\mathrm{C} 14-\mathrm{C} 16$ and $\mathrm{C} 16-\mathrm{C} 17$ distances lie in

Received 18 October 2006 Accepted 27 October 2006


Figure 1
The molecular structure of (I). Displacement ellipsoids are drawn at the $50 \%$ probability level. H atoms are shown as spheres of arbitrary radii. Atoms H29 and H30 have a site-occupancy factor of 0.50 each.


Figure 2
View perpendicular to the $b c$ plane, showing the molecular stacking.
between the distances for a typical $\mathrm{C} s p^{2}=\mathrm{C} s p^{2}$ double bond ( $1.34 \AA$ ) and a typical Csp $p^{2}-\mathrm{Csp} p^{2}$ single bond ( $1.46 \AA$; Allen et al., 1987). Herbstein et al. (1999) have given a classification of cis-enol rings in terms of order, disorder and charge (de)localization based on a few structural parameters, such as $q_{1}=d_{1}-d_{4}\left[\right.$ here $\left.d_{1}-d_{4}=d(\mathrm{C} 14-\mathrm{O} 15)-d(\mathrm{C} 17-\mathrm{O} 18)\right]$ and $q_{2}=d_{2}-d_{3}\left[\right.$ here $d_{2}-d_{3}=d(\mathrm{C} 14-\mathrm{C} 16)-d(\mathrm{C} 16-$ C17)]. The observed $q_{1}[0.010$ (1) $\AA]$ and $q_{2}[-0.003(1) \AA]$ values are indicative either of a delocalized cis-enol ring, or of a disordered (statically or dynamically) superposition of two valence tautomers. The fact that a double-well potential is found atoms H29/H30 (see Experimental section) leads to the conclusion that the present structure has a disordered cis-enol ring.

## Experimental

A solution of 4-hydroxy-6-methyl-2-pyrone ( 20 mmol ) in ethyl orthoformiate ( 10 ml ) and ethanol ( 25 ml ) was maintained under reflux for 3 h . After cooling, a yellow-red powder-like product was obtained by filtration and recrystallization from ethanol. Needleshaped orange crystals were isolated from the powder.


Figure 3
In-plane arrangement of the molecules of (I), with the very weak C$\mathrm{H} \cdots \mathrm{O}$ interactions indicated as dotted lines.

## Crystal data

$\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{O}_{6}$
$Z=4$
$M_{r}=262.22$
Monoclinic, $P 2_{h} / c$
$D_{x}=1.541 \mathrm{Mg} \mathrm{m}^{-3}$
$a=8.8290$ (4) A
$b=14.1820$ (5) $\AA$
$c=12.5238(5) \AA$
Mo K $\alpha$ radiation
$\mu=0.12 \mathrm{~mm}^{-1}$
$T=120 \mathrm{~K}$
Needle, orange
$0.30 \times 0.05 \times 0.05 \mathrm{~mm}$
$V=1130.27$ (9) $\AA^{3}$
Data collection
Bruker APEX 2 diffractometer
$\omega$ scans
Absorption correction: none
26469 measured reflections
4322 independent reflections
2755 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.037$
$\theta_{\text {max }}=33.2^{\circ}$

## Refinement

Refinement on $F^{2}$

$$
\begin{aligned}
& w=\left[1-\left(F_{\mathrm{o}}-F_{\mathrm{c}}\right)^{2} / 36 \sigma^{2}(F)\right]^{2} / \\
& {\left[10.2 T_{\mathrm{o}}(x)+13.2 T_{1}(x)+\right.} \\
& \left.3.67 T_{2}(x)\right] \text { where } T_{i} \text { are Cheby- } \\
& \text { chev polynomials and } x=F_{c} F_{\text {max }} \\
& \text { (Watkin, 1994; Prince, 1982) } \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.46 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.31 \mathrm{e}^{-3}
\end{aligned}
$$

Table 1
Selected bond lengths $(\AA)$.

| O7-C6 | $1.2111(14)$ | O15-C14 | $1.3016(14)$ |
| :--- | :--- | :--- | :--- |
| O8-C2 | $1.3670(15)$ | O18-C17 | $1.2913(15)$ |
| O8-C6 | $1.3855(14)$ | C10-C14 | $1.4824(16)$ |
| O12-C11 | $1.2001(14)$ | C14-C16 | $1.3983(16)$ |
| O13-C4 | $1.3478(14)$ | C16-C17 | $1.4062(17)$ |
| O13-C11 | $1.4147(15)$ | C17-C19 | $1.4915(17)$ |

Table 2
Hydrogen-bond geometry ( $\AA{ }^{\circ},{ }^{\circ}$ ).

| $D-\mathrm{H} \cdots A$ | $D-\mathrm{H}$ | $\mathrm{H} \cdots A$ | $D \cdots A$ | $D-\mathrm{H} \cdots A$ |
| :--- | :--- | :--- | :--- | :--- |
| O15-H29 $\cdots \mathrm{O} 18$ | 0.93 | 1.58 | $2.456(2)$ | 154 |
| O18-H30 $\cdots$ O15 | 1.05 | 1.44 | $2.456(2)$ | 161 |
| C3-H23 $^{\mathrm{H}} \mathrm{O}^{\mathrm{i}}$ | 0.93 | 2.38 | $3.2928(19)$ | 166 |
| C19-H26 $\cdots \mathrm{O}^{\text {ii }}$ | 0.90 | 2.52 | $3.405(2)$ | 165 |
| Symmetry codes: (i) $x-1,-y+\frac{3}{2}, z-\frac{1}{2}$; (ii) $x-1,-y+\frac{1}{2}, z-\frac{1}{2}$. |  |  |  |  |

Nine reflections that were in the vicinity of the beam-stop, i.e. those for which $(\sin \theta / \lambda)^{2}<0.01$, were not used in the least-squares refinement. All H atoms were visible in difference maps. There was H -atom disorder at the O15 and O18 sites of the cis-enol ring, and the disorder was modelled by fixing the occupancy parameters for atoms

## organic papers

H 29 and H 30 at 0.5 . No attempts were made to refine the occupancy factors of these two H atoms. H atoms were not refined $(\mathrm{O}-\mathrm{H}=$ $0.93-1.05 \AA$ and $\mathrm{C}-\mathrm{H}=0.90-0.97 \AA)$, with $U_{\text {iso }}(\mathrm{H})$ values set at $1-1.5$ times the $U_{\text {eq }}$ of the parent atoms for C-bound H atoms.

Data collection: APEX2 (Bruker-Nonius, 2004); cell refinement: APEX2; data reduction: SAINT-Plus (Bruker-Nonius, 2004); program(s) used to solve structure: SIR2002 (Burla et al., 2003); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: CAMERON (Watkin et al., 1996); software used to prepare material for publication: CRYSTALS.

## References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1--19.

Anderson, G. L., Shim, J. L. \& Brown, A. D. (1976). J. Org. Chem. 41, 10951099.

Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. \& Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.

Bruker-Nonius (2004). APEX2 and SAINT-Plus. Bruker-Nonius BV, Delft, The Netherlands.
Burla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. \& Spagna, R. (2003). J. Appl. Cryst. 36, 1103.
Cairns, H., Cox, D., Gould, K. J., Ingall, A. H. \& Suschitzky, J. L. (1985). J. Med. Chem. 28, 1832-1842.
Grivaky, E. M., Lee, S., Siyal, C. W., Duch, D. S. \& Nichol, C. A. (1980). J. Med. Chem. 23, 327-329.
Herbstein, F. H., Iversen, B. B., Kapon, M., Larsen, F. K., Madsen, G. K. H. \& Reisner, G. M. (1999). Acta Cryst. B55, 767-787.
Kuo, S. G., Huang, L. J. \& Nakamura, H. (1984). J. Med. Chem. 27, 539-544.
Prince, E. (1982). Mathematical Techniques in Crystallography and Materials Science. New York: Springer-Verlag.
Rollett, J. S. (1965). Editor. Computing Methods in Crystallography, pp. 67-68. Oxford: Pergamon Press.
Watkin, D. (1994). Acta Cryst. A50, 411-437.
Watkin, D. J., Prout, C. K. \& Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, University of Oxford, England.


[^0]:    (C) 2006 International Union of Crystallography All rights reserved

